

Classical Civilizations and the Cosmos: A Comparative Analysis of Ancient Cosmological Theories in Light of Islamic Perspectives

الحضارات الكلاسيكية والكون: دراسة مقارنة للنظريات الكونية القديمة في ضوء الرؤية الإسلامية

Authors Details

1. Dr. Waleed Azhar (Corresponding Author)

PhD, Institute of Islamic Studies, University of the Punjab, Lahore, Pakistan;
Visiting Lecturer, Department of Islamic Studies, COMSATS University, Lahore, Pakistan. waleedazhar1984@gmail.com

2. Hafiz Muhammad Naeem Saif ul Islam

Lecturer, Department of Islamic Studies, University of Engineering and Technology (UET), Lahore, Pakistan.

3. Mudassar Yasin

Lecturer in Islamic Studies, Government Associate College, Depalpur;
M. Phil Scholar, University of Okara, Pakistan.

Citation

Azhar, Dr. Waleed, Hafiz Muhammad Naeem Saif ul Islam, and Mudassar Yasin. "Classical Civilizations and the Cosmos: A Comparative Analysis of Ancient Cosmological Theories in Light of Islamic Perspectives." *Al-Marjan Research Journal* 3, no. 2 (April-June 2025): 88-98.

Submission Timeline

Received: Mar 07, 2025

Revised: Mar 24, 2025

Accepted: April 08, 2025

Published Online:

April 22, 2025

Publication, Copyright & Licensing

Al-Marjan Research Center, Lahore, Pakistan.

All Rights Reserved © 2023.

This article is open access and is distributed under the terms of Creative Commons Attribution 4.0 International License

Classical Civilizations and the Cosmos: A Comparative Analysis of Ancient Cosmological Theories in Light of Islamic Perspectives

الحضارات الكلاسيكية والكون: دراسة مقارنة للنظريات الكونية القديمة في ضوء الرؤية الإسلامية

☆ Dr. Waleed Azhar ☆ Hafiz Muhammad Naeem Saif ul Islam ☆ Mudassar Yasin

Abstract

Ancient cosmological models developed by classical civilizations such as the Greeks, Egyptians, Mesopotamians, and Indians reveal a rich tapestry of human attempts to understand the origin, structure, and purpose of the universe. Philosophers like Plato and Aristotle proposed metaphysical frameworks centered on geocentrism, eternal matter, and hierarchical realities, while mythological traditions offered symbolic representations of the heavens and the earth. These models, although rooted in observation and logic, were often limited by their reliance on human reason and lacked a unifying divine narrative. This study aims to compare these ancient cosmological theories with the Islamic worldview as presented in the Qur'an and elaborated by Muslim thinkers such as Al-Farabi, Ibn Sina, Al-Ghazali, and Ibn Rushd. Using a comparative and interdisciplinary methodology that integrates philosophical, theological, and historical analysis, the paper explores key differences and convergences, particularly in areas such as cosmological structure, teleology, and epistemology. The findings suggest that while classical models laid foundational frameworks in metaphysics and astronomy, Islamic cosmology offered a theocentric and morally purposeful vision of the universe, grounded in divine revelation and integrated with reason and observation. The study underscores the significance of Islamic contributions in bridging science and spirituality and highlights how Islamic cosmology preserved, critiqued, and transcended earlier models. This analysis contributes to a deeper understanding of intellectual continuity and transformation in the history of cosmological thought.

Keywords: Classical cosmology, Greek philosophy, Islamic cosmology, metaphysics, ancient civilizations, Quranic cosmology, Aristotle, Ptolemy, Plato, pre-Islamic worldviews

1. Introduction

Cosmological thought has held a central place in the intellectual traditions of classical civilizations, reflecting humanity's enduring quest to understand the origin, structure, and purpose of the universe. In ancient Greece, thinkers such as Plato and Aristotle laid the groundwork for systematic cosmology by proposing metaphysical and geocentric models that would influence philosophical discourse for centuries. Similarly, civilizations like Egypt,

☆ PhD, Institute of Islamic Studies, University of the Punjab, Lahore, Pakistan;
Visiting Lecturer, Department of Islamic Studies, COMSATS University, Lahore, Pakistan.

☆ Lecturer, Department of Islamic Studies, University of Engineering and Technology (UET), Lahore, Pakistan.

☆ Lecturer in Islamic Studies, Government Associate College, Depalpur; M. Phil Scholar, University of Okara, Pakistan.

Mesopotamia, and India developed intricate cosmological narratives that merged myth, astronomy, and metaphysics. These models not only attempted to explain physical phenomena but also shaped broader philosophical and theological worldviews, establishing a framework for understanding humanity's place in the cosmos. Cosmology served as a bridge between science and spirituality, often informing ethical systems, religious rituals, and political ideologies. The present study seeks to explore and compare these ancient cosmological theories in light of Islamic perspectives. By engaging in a comparative analysis, the research aims to highlight how Islamic cosmology—rooted in the Qur'anic revelation and expanded by scholars like Al-Farabi, Ibn Sina, and Al-Ghazali—both assimilated and transcended classical models. Key research questions include: How did classical civilizations conceptualize the universe? What were the metaphysical and theological assumptions underlying their models? How did Islamic cosmology interact with and critique these paradigms? And what unique contributions did the Islamic worldview offer? This study employs a multidisciplinary methodology, combining philosophical analysis, historical contextualization, and theological reflection. Its scope encompasses major classical theories and significant Islamic responses, aiming to contribute to a nuanced understanding of the evolution of cosmological thought.

2. Cosmological Theories in Classical Civilizations

Since the dawn of civilization, human beings have looked to the heavens in search of meaning, order, and purpose. Across different regions and epochs, classical civilizations developed cosmological frameworks that not only explained the structure of the universe but also reflected deeply held metaphysical and theological convictions. These systems were not mere scientific speculations; rather, they were intertwined with philosophy, ethics, and religion. The Greeks sought a rational and metaphysical order in the cosmos, the Romans expanded upon Hellenistic theories, while Egyptian and Mesopotamian models merged divine mythology with astronomical observations. In parallel, Indian cosmology developed cyclic and metaphysically rich accounts of the universe. Each of these traditions, in its own way, contributed to the intellectual heritage that would later interact with and be critically examined by Islamic cosmology.

2.1 Greek Cosmology

Among the Greeks, Plato (d. 347 BCE) presented one of the earliest systematic accounts of the cosmos in his dialogue *Timaeus*. He posited the existence of a rational and benevolent Demiurge (craftsman) who fashioned the universe using eternal forms or ideals as blueprints. Central to his cosmology is the idea of the World Soul (*Psyche Kosmou*), which animates the cosmos, rendering it a living, intelligent organism. Plato writes:

"The universe is a living creature with soul and reason...a single visible living being containing all other living beings."¹

This idealistic vision of the cosmos deeply influenced later Neoplatonic and Islamic thinkers, such as Plotinus and Al-Farabi, who interpreted the World Soul as a bridge between the transcendent and the material.

Aristotle (d. 322 BCE), Plato's student, developed a more empirical and structured model of the cosmos. In his geocentric universe, the earth stands immobile at the center, surrounded by concentric spheres of the moon, planets, and fixed stars. The heavenly bodies move in perfect circles, driven by the Unmoved Mover (*Prōton Kinoun Akiniton*), a purely actual and eternal

¹ Plato. *Timaeus*. Translated by Donald J. Zeyl. Indianapolis: Hackett Publishing Company, 2000, 30b–31a.

being who causes motion not by physical contact but by being the ultimate object of desire and thought.

"There is something which moves without being moved; eternal and substance and actuality."²

Aristotle's conception of the ether (aithēr) as the fifth element—unchanging and divine—also became a cornerstone of Hellenistic and later Islamic cosmology. Ibn Rushd (Averroes) endorsed much of Aristotle's framework, yet thinkers like Al-Ghazālī would critique its metaphysical implications, particularly its denial of divine intervention in the celestial realm.

2.2 Hellenistic and Roman Views

During the Hellenistic period, Claudius Ptolemy (d. c. 170 CE) systematized the geocentric model in his influential work *Almagest*, wherein he introduced complex epicycles and deferents to account for the observed motion of planets. His model, though mathematically sophisticated, preserved Aristotle's geocentric assumptions.

"Let no one untrained in geometry enter here."

Ptolemy's synthesis of observation and philosophical cosmology was adopted and refined by Muslim astronomers like Al-Battānī and Al-Ṭūsī, though later challenged by Ibn al-Shāṭir and eventually by Copernicus.

The Stoics, meanwhile, envisioned the cosmos as a single, living, rational entity permeated by logos (divine reason). Their pantheistic worldview emphasized determinism and the cyclical destruction and rebirth of the universe—a notion reminiscent of Indian thought.

Epicureans, by contrast, adopted a materialist cosmology. They posited an infinite number of atoms moving randomly in an infinite void, thereby rejecting teleology and divine governance. This view stood in stark contrast to Islamic cosmology, which emphasized purpose and divine order.

2.3 Ancient Indian Cosmology

Indian cosmological thought, deeply influenced by Vedic, Hindu, and Jain traditions, conceived of the universe as cyclical and eternal. The concept of Brahmāṇḍa (cosmic egg) symbolizes the entire universe emerging from and returning to a cosmic singularity. Time is measured in vast kalpas (epochs), each spanning billions of years. Space and time are not linear but rhythmic and repetitive.

In the *Vishnu Purana*, it is said:

"Each universe rests in the waters of chaos, sleeps in the night of Brahma, and is reborn with the dawn of a new day."

This concept of cosmic rebirth and dissolution parallels Stoic and Neoplatonic ideas but diverges sharply from the Islamic concept of a linear eschatological history, culminating in resurrection and divine judgment.

2.4 Ancient Egyptian and Mesopotamian Models

Egyptian cosmology was rooted in mythology rather than systematic philosophy. The sky goddess Nut, the earth god Geb, and the air god Shu formed the cosmic structure. The heavens were believed to be a watery domain through which the sun god Ra traveled daily. The universe was thus animated by divine forces and cyclical regeneration.

Similarly, Mesopotamian cosmology, as recorded in the *Enuma Elish*, portrayed the universe as a battlefield between gods. The earth was flat, with a domed sky above and an underworld

² Aristotle. *Metaphysics*. Translated by W. D. Ross. Chicago: Encyclopaedia Britannica, 1952, 1071b6–10.

below. The world emerged from the body of the slain chaos goddess Tiamat, signifying cosmic order born from primordial chaos.

The *Enuma Elish* proclaims:

"When on high the heaven had not been named, and earth beneath had not been called, there was only Apsu and Tiamat."

These narratives, while deeply symbolic, laid the foundation for later metaphysical interpretations of order, chaos, and divine agency.

From an Islamic standpoint, such mythological or deterministic views lack the coherence and transcendence provided by divine revelation. The Qur'an presents a cosmos created with balance, order, and purpose, as in the verse:

﴿وَالسَّمَاءَ رَفَعَهَا وَوَضَعَ الْمِيزَانَ﴾

"And the sky He raised and established the balance."

This divine balance (*mīzān*) refutes both chaos and randomness, underscoring a moral and metaphysical order that guides Islamic cosmology. Scholars like Fakhr al-Dīn al-Rāzī and Al-Ghazālī critiqued the mythologies and rationalistic excesses of classical cosmologies, offering a theocentric alternative grounded in both revelation and rational inquiry.

As Al-Ghazālī wrote:

﴿الْكُونُ لَيْسُ ذَاتًا قَائِمَةً بِنَفْسِهَا بَلْ هُوَ حَادِثٌ مُفْتَرِّضٌ مَحْدُثٌ﴾⁴

"The universe is not self-subsistent in its essence; rather, it is contingent and dependent upon a Creator."

In sum, the classical civilizations laid rich intellectual foundations for cosmological speculation. Yet, from the Islamic perspective, these were either incomplete or speculative without the guidance of divine revelation, which brought a unique blend of spiritual depth, metaphysical clarity, and scientific openness to the discourse on the cosmos.

3. Islamic Cosmological Perspectives

In contrast to the mythological and speculative approaches of classical civilizations, Islamic cosmology is rooted in divine revelation and enriched through the rigorous intellectual engagement of Muslim scholars with philosophical, scientific, and theological traditions. The Qur'ān presents a universe created with intention, balance, and precision, underscoring divine authorship and omnipotence. Islamic scholars, while interacting with Greek and other classical cosmologies, critically adapted, integrated, or refuted their concepts in light of Islamic epistemology. This section explores the foundational cosmological concepts presented in the Qur'ān and the nuanced contributions of classical Muslim thinkers to the understanding of the cosmos.

3.1 Quranic Conceptions of the Universe

The Qur'ān repeatedly invites reflection on the universe as a sign (*āyah*) of God's creative power and wisdom. The creation of the heavens and the earth is a central theme, establishing the cosmological framework of Islam:

﴿اللَّهُ الَّذِي خَلَقَ سَبْعَ سَمَاوَاتٍ وَمِنَ الْأَرْضِ مِثْلَهُنَّ﴾⁵

"It is Allah who created the seven heavens and of the earth the like of them."

The concept of seven heavens (*sabā' samāwāt*) appears multiple times, conveying a layered and hierarchical structure of the cosmos. This idea, distinct from the Greek concentric spheres, emphasizes divine design rather than mechanical necessity.

³ Ar-Rahman 55:7

⁴ Al-Ghazālī, *Tahāfut al-Falāsifa* [Damascus: Dār al-Fikr, 2003], 56

⁵ At-Talaq, 65:12

The Qur'ān also emphasizes **order, balance, and harmony**, as in:

⁶ ﴿وَالسَّمَاءَ رَفَعَهَا وَوَضَعَ الْمِيزَانَ﴾

“And the heaven He raised, and imposed the balance.”

This *mīzān* (balance) is interpreted by scholars like Fakhr al-Dīn al-Rāzī as referring both to the physical harmony of the universe and the moral equilibrium embedded in creation. The cosmos, in Qur'ānic terms, operates within defined laws, yet remains subject to God's will, countering both materialistic determinism and mythological anthropomorphism.

Space and time in the Qur'ān are fluid and non-linear. The concept of divine time transcending human time is highlighted in:

⁷ ﴿وَإِنَّ يَوْمًا عِنْدَ رَبِّكَ كَأَلْفِ سَنَةٍ مِّمَّا تَعُدُّونَ﴾

“Indeed, a day with your Lord is like a thousand years of your counting.”

Such verses dismantle purely mechanistic or cyclical notions of time, anchoring temporality in divine command and purpose.

3.2 Contributions of Muslim Scholars

Muslim philosophers and scientists built upon Qur'ānic foundations by engaging deeply with the Greek philosophical tradition. Their work resulted in unique cosmological syntheses that preserved Islamic theological principles while incorporating rational inquiry.

Al-Fārābī (d. 950 CE) and Al-Kindī (d. 873 CE) are notable for synthesizing Neoplatonic emanationism with Islamic monotheism. They described the cosmos as proceeding from the One (God) through a series of emanations, culminating in the active intellect which governs the sublunar world.

“The First is the necessary existent... from it emanates the first intellect, which then causes the celestial spheres.”⁸

While the emanation model shares structural similarities with Neoplatonic cosmology, Muslim thinkers emphasized God's will and knowledge, rejecting the impersonal necessity of emanation.

Ibn Sīnā (Avicenna, d. 1037 CE) refined this synthesis in his *Kitāb al-Shifā'*, proposing a ten-intellect model derived from the celestial spheres. However, he maintained that God's creation is eternal in effect but not in cause, a position later critiqued by Al-Ghazālī.

Al-Bīrūnī (d. 1048 CE) and Ibn al-Haytham (d. 1040 CE) advanced a more empirical and mathematically grounded cosmology. Al-Bīrūnī's *al-Qānūn al-Mas'ūdī* included calculations of planetary movements and critiques of Ptolemaic models. Ibn al-Haytham, in *Kitāb al-Manāzir*, emphasized experimentation and mathematical precision in optics, laying the groundwork for modern scientific method.

“The duty of the man who investigates the writings of scientists... is to suspend judgment, follow the evidence, and not place trust in opinion.”⁹

Al-Ghazālī (d. 1111 CE) offered a powerful theological critique of Greek cosmology in his seminal work *Tahāfut al-Falāsifa*. He rejected the eternal universe theory and denied the causal necessity of celestial movements.

“اعتمادُ الْفَلَاسِفَةِ عَلَى الضرُورَةِ الْعُقْلِيَّةِ فِي تَرْتِيبِ الْأَسْبَابِ بَاطِلٌ. فَإِنَّ اللَّهَ يَخْلُقُ الْأَثْرَ عِنْدَ السُّبُّبِ لَا بِهِ.”

⁶ Ar-Rahman,55:7

⁷ Al-Hajj:47

⁸ Al-Fārābī, *Risāla fī al-‘Aql*, [Cairo: Dār al-Ma‘ārif, 1952], 36

⁹ Ibn al-Haytham, *Kitāb al-Manāzir*, [Cairo: Dār al-Fikr al-‘Arabi, 1967], 1:3

“The philosophers' reliance on the rational necessity of causal sequences is invalid, for God creates the effect upon the occurrence of the cause—not through it.”

This reaffirmed divine omnipotence and contingency in creation, aligning cosmology with *kalām* (theological) principles.

Ibn Rushd (Averroes, d. 1198 CE) responded with *Tahāfut al-Tahāfut*, defending Aristotelian cosmology. He distinguished between necessary and contingent causes, arguing that celestial motions could be philosophically harmonized with divine will.

“The harmony between religion and philosophy is not only possible, but necessary.”¹⁰

He saw no contradiction between the rational structure of the heavens and the transcendent commands of God, a view that later influenced Latin scholastics like Thomas Aquinas.

In conclusion, Islamic cosmological perspectives integrate revelation, reason, and empirical observation. The Qur’ān provides the metaphysical and theological foundation, while Muslim scholars critically engaged with classical models, contributing original insights and corrections. This interplay of faith and intellect created a unique cosmological vision that upheld the unity, order, and purpose of the universe as signs of divine majesty.

4. Comparative Analysis

The cosmological models developed by classical civilizations and Islamic scholars reflect diverse ontological, metaphysical, and epistemological orientations. While the former often emerged from philosophical speculation and mythological narrative, the Islamic perspective represents a fusion of revelation (*wahy*), reason (*‘aql*), and empirical observation (*mushāhadah*). This section undertakes a comparative analysis between Greco-Roman, Indian, Mesopotamian, and Islamic cosmologies across four critical dimensions: ontological foundations, structure of the universe, teleology and divine will, and epistemological methodology.

4.1 Ontological Foundations

Classical cosmology, especially in the works of Plato and Aristotle, is grounded in an ontological dualism between form and matter. Plato postulated a world of ideal Forms, with the material cosmos fashioned by a demiurge—a craftsman-like divine being using these Forms as blueprints (*Timaeus*, 28A–30C). Aristotle’s cosmos, by contrast, is a hierarchically ordered system driven by the unmoved mover, a purely actual and impersonal cause that sets the heavens in motion through desire.¹¹

In Islamic thought, ontology is decisively theocentric. God (Allāh) is the sole necessary being (*wājib al-wujūd*), from whom all contingent existence proceeds.

”الله خالق كُلّ شيءٍ“¹²

“Allah is the Creator of all things.”

Unlike the Greek concept of an impersonal first cause, Islamic cosmology affirms that the universe exists through the volitional and purposeful act of the One Creator.

According to Ibn Sīnā, all beings derive their existence from the Necessary Existent, but his concept of emanation was critiqued by Al-Ghazālī for contradicting the Qur’ānic portrayal of divine agency as willful and temporal.¹³

¹⁰ Ibn Rushd, *Tahāfut al-Tahāfut* [Beirut: Dār al-Āfāq, 1982], 232

¹¹ Aristotle. *Metaphysics*. Translated by W. D. Ross. Chicago: Encyclopaedia Britannica, 1952, XII.7.

¹² Az-Zumar,39:62

4.2 Structure of the Universe

The structure of the universe in Greek thought, especially in Aristotelian and Ptolemaic models, is geocentric, comprised of concentric celestial spheres with the earth at the center. This model, though geometrically elegant, is fundamentally static and eternal.

The Islamic view, drawn from the Qur'ān, posits a multi-layered cosmos, most notably the seven heavens (sab' samāwāt), created with precision and harmony.

"الَّذِي خَلَقَ سَبْعَ سَمَاوَاتٍ طِبَاقًا"¹⁴

"Who created seven heavens in layers."

The dynamic nature of the Islamic universe is underscored by continuous acts of divine maintenance and control:

"يُدَبِّرُ الْأَمْرَ مِنَ السَّمَاءِ إِلَى الْأَرْضِ"¹⁵

"He regulates the affair from the heaven to the earth."

Unlike the eternal and self-sustaining cosmos of Aristotle, Islamic cosmology emphasizes creation (khalq) and sustenance (tadbīr), linking cosmological motion to divine will.

The observational contributions of al-Bīrūnī and Ibn al-Haytham advanced the understanding of a non-static cosmos, further distancing Islamic thought from classical geocentrism through precise astronomical data and optical theories.

4.3 Teleology and Divine Will

Teleological perspectives in classical cosmology vary. Plato believed the cosmos was crafted by a rational demiurge aiming for the good. Aristotle, however, viewed cosmic order as resulting from natural motion directed toward inherent ends without moral intention. Epicurean cosmology, by contrast, denied purpose altogether, suggesting a universe driven by random atomic motions.

Islamic cosmology, rooted in revelation, sees the universe as created with a clear purpose:

"وَمَا خَلَقْنَا السَّمَاءَ وَالْأَرْضَ وَمَا بَيْنَهُمَا بَاطِلًا"¹⁶

"And We did not create the heaven and the earth and what is between them in vain."

This purposeful design is not merely metaphysical but moral and eschatological, as it includes human accountability and the afterlife.

"أَفَحَسِبُنُّ أَنَّا خَلَقْنَاكُمْ عَبْدًا"¹⁷

"Did you think that We created you in play?"

In this framework, the cosmos becomes a moral stage, with every element serving a role in fulfilling divine wisdom. Human beings are described as vicegerents (khalīfah) entrusted with stewardship of the earth, giving cosmic teleology a human-centered dimension absent in most classical systems.

4.4 Epistemological Approaches

Classical cosmology leaned heavily on rational inference and observation, particularly in Aristotelian and Stoic thought. Revelation played no role, and myths filled the epistemic gaps. Islamic cosmology, however, is grounded in a tripartite epistemology:

- Revelation (wahy) – the Qur'ān as the ultimate source of truth.

¹³ Al-Ghazālī, *Tahāfut al-Falāsifa* [Cairo: Dār al-Ma‘ārif, 1966], 91

¹⁴ Al-Mulk, 67:3

¹⁵ As-Sajda, 32:5

¹⁶ Saad, 38:27

¹⁷ Al-Mu'minun, 23:115

- Reason ('aql) – used to interpret signs of creation.
- Observation (mushāhadah) – empirical study of the cosmos.

This integrative methodology is expressed in the Qur'ānic encouragement to observe the natural world:

"فُلِّ انظُرُوا مَاذَا فِي السَّمَاوَاتِ وَالْأَرْضِ"¹⁸

"Say: Observe what is in the heavens and the earth."

Scholars like Ibn al-Haytham embody this fusion. His emphasis on experimental verification and methodological doubt foreshadowed the scientific method.

"Truth is sought for its own sake... and the seeker after truth is not one who studies the writings of the ancients and follows his natural disposition, but rather he suspends judgment and uses reason."¹⁹

Furthermore, Ibn Rushd argued for the reconciliation of revelation and philosophy, asserting that both ultimately lead to truth.

"Wherever demonstration leads, we must follow, and the study of philosophy is ordained by the Sharī'ah."²⁰

In conclusion, while classical cosmologies offered remarkable philosophical depth, their ontological, structural, teleological, and epistemological limitations were addressed and transcended by Islamic cosmology. By rooting the cosmos in divine will, aligning purpose with revelation, and validating empirical inquiry, Islamic thought forged a unique and enduring vision of the universe—simultaneously spiritual, rational, and dynamic.

5. Contemporary Relevance and Reflections

The rich tapestry of cosmological thought in classical civilizations and Islamic tradition continues to echo in the corridors of modern science and philosophy. Though modern astrophysics has advanced far beyond ancient geocentric models, the intellectual legacy of thinkers like Aristotle, Ptolemy, Ibn Sina, and Ibn al-Haytham laid critical groundwork for later scientific revolutions. Their inquiries into the nature of substance, motion, space, and the structure of the heavens shaped a rational and systematic approach to understanding the universe, which remains foundational in scientific reasoning today.

Modern cosmology, based on Big Bang theory, expanding universe models, and quantum cosmology, may differ substantially in method and conclusion, but it often mirrors the philosophical wonder and existential questions that ancient and Islamic cosmologies addressed: Where did we come from? What is the nature of the cosmos? Is there a purpose behind existence?

The Islamic worldview, with its emphasis on *tawhīd* (divine unity) and cosmic order, continues to inspire a theocentric interpretation of modern discoveries. For example, the Qur'ānic verse:

"وَالسَّمَاءَ بَنَيْنَاهَا بِأَيْدٍ وَإِنَّا لَمُوسِعُونَ"²¹

"And the heaven We constructed with strength, and indeed, We are [its] expander."

¹⁸ Yunus, 10:101

¹⁹ Ibn al-Haytham, *Kitāb al-Manāzir* [Cairo: Dār al-Fikr al-‘Arabī, 1967], 1:5

²⁰ Ibn Rushd, *Faṣl al-Maqāl* [Beirut: Dār al-Gharb al-Islāmī, 1993], 28

²¹ Adh-Dhariyat, 51:47

has often been interpreted by contemporary Muslim thinkers as a remarkable parallel to the expanding universe theory, although this requires cautious hermeneutics and does not substitute empirical verification.

Philosophically, classical and Islamic cosmologies remind modern science that quantitative models alone cannot address metaphysical and ethical dimensions. As al-Fārābī noted, knowledge of the cosmos must be harmonized with knowledge of the soul and purpose of life.²²

Spiritually, cosmology reawakens awe, humility, and moral responsibility. The Qur'an encourages cosmological reflection not just for knowledge, but for moral insight and spiritual awakening:

"إِنَّ فِي خَلْقِ السَّمَاوَاتِ وَالْأَرْضِ ... لَآيَاتٍ لِّأُولَئِكَ الْمُبَشِّرِينَ"²³

"Indeed, in the creation of the heavens and the earth... are signs for those of understanding." This integration of the scientific, ethical, and spiritual yields a holistic cosmology—an outlook which modern reductionist approaches often lack. Ancient models, despite their limitations, still carry ethical and metaphysical lessons: the idea of cosmic harmony (Greek *kosmos*), the role of divine wisdom (Islamic *ḥikmah*), and the moral accountability of the observer.

Finally, the challenge for contemporary thinkers is not to discard pre-modern cosmologies as obsolete, but to engage them as intellectual ancestors whose insights may still offer guidance in interpreting scientific data, cultivating ethical reflection, and understanding the human place in the cosmos.

6. Conclusion

This study has explored the profound and multifaceted cosmological frameworks that emerged in classical civilizations—particularly those of the Greeks, Romans, Indians, Egyptians, and Mesopotamians—and compared them with the cosmological perspectives found in the Qur'an and classical Islamic scholarship. The research has demonstrated that while the classical theories of Plato, Aristotle, Ptolemy, and others provided intellectually robust and systematic models for understanding the structure and purpose of the universe, these models were often limited by their philosophical assumptions, such as the eternity of the world, the impersonal nature of the divine, and a largely static cosmos. In contrast, Islamic cosmology, grounded in revelation (*wahy*) and integrated with philosophical inquiry ('*aql*) and empirical observation (*mushāhadah*), introduced a transcendental coherence—placing the One Creator at the center of the universe's origin, structure, and purpose. Qur'anic cosmology presents a universe that is dynamic, purpose-driven, and ethically charged, calling upon humanity to reflect on the signs (*āyāt*) in the heavens and the earth as a means to spiritual insight and moral accountability. Muslim scholars such as al-Fārābī, Ibn Sīnā, al-Bīrūnī, and Ibn Rushd synthesized Hellenistic science with Qur'anic metaphysics, developing a tradition that was both scientific and spiritually meaningful. Figures like al-Ghazālī, meanwhile, critiqued and reoriented cosmological discourse towards theocentric paradigms, demonstrating the internal diversity and richness of Islamic thought. Looking forward, this comparative framework invites further interdisciplinary exploration—such as analyzing Chinese cosmological traditions like those in Daoism and Confucianism, or engaging with modern cosmological theories (e.g., Big Bang, string theory, multiverse) through the lens of Islamic metaphysics and ethics. Such research may help forge a new paradigm of integrated

²² Al-Fārābī, Al-Madīnah al-Fāḍilah [Beirut: Dār al-Mashriq, 1985], 44

²³ Aal-E-Imran, 3:190

knowledge, in which science and spirituality are no longer seen as antagonistic, but as complementary approaches to understanding the universe and humanity's place within it.

Bibliography / کتابات

- * Al-Fārābī, Abū Naṣr. *Al-Madīnah al-Fāḍilah*. Beirut: Dār al-Mashriq, 1985.
- * Al-Fārābī, Abū Naṣr. *Risāla fī al-‘Aql*. Cairo: Dār al-Ma‘ārif, 1952.
- * Aristotle. *Metaphysics*. Translated by W. D. Ross. Chicago: Encyclopaedia Britannica, 1952.
- * Ibn al-Haytham, Abū ‘Alī al-Hasan. *Kitāb al-Manāzir*. Cairo: Dār al-Fikr al-‘Arabī, 1967.
- * Ibn Rushd, Abū al-Walīd Muḥammad. *Faṣl al-Maqāl*. Beirut: Dār al-Gharb al-Islāmī, 1993.
- * Ibn Rushd, Abū al-Walīd Muḥammad. *Tahāfut al-Tahāfut*. Beirut: Dār al-Āfāq, 1982.
- * Plato. *Timaeus*. Translated by Donald J. Zeyl. Indianapolis: Hackett Publishing Company, 2000.